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~ o n i a n  cosmology: a further investigation 

G E Sneddon 
Department of Mathematics, Monash University, Clayton, Victoria 3 168, Australia 

Received 30 June 1975, in final form 19 September 1975 

&mct In a recent paper, Ryan claimed that Hamiltonian cosmology was dead. The 
present paper investigates the illness and makes some attempts at reviving the subject. It is 
found that in certain cases, the addition of another constraint to the variational principle will 
enable the correct field equations to be obtained. These results are then compared with 
some results for asymptotically flat spaces. 

k is well known the Einstein vacuum field equations can be derived from the 
miational principle 

s J R(J-g) d4x = O (1.1) 

here R is the scalar curvature of a four-dimensional Riemann space of signature +2. 
Amowitt et al (1962, to be referred to as ADM) were able to cast this variational 
pnodple into Hamiltonian form. In this formalism the generalized coordinates, gij?, 
had momenta, n'j, are functions of three space-like variables. In order to 'test' the 
asehrlness of this procedure, several simple cases were investigated. These included the 
&ann universe (DeWitt 1967), homogeneous cosmologies (Misner 1969, Ryan 
1972, involving the study of Hamiltonian cosmology) and cylindrical gravitational 
mves (Kuchar 1971). 

fie methods used by Misner (1969) and Ryan (1972) involved assuming a metric of 
tbe form 

h e  the 
g i j =  gab(t )uaiabj  (1.2) 

do" = Cabcab A uc 

are three time-independent one-forms that satisfy 

(1.3) 
;Indwhere the C", are the structure constants. Also, rii is assumed to have a similar 
'9. %%e assumptions can be used in the variational principle (1.1) (or its Hamilto- 
wquivalent) and the new generalized coordinates and momenta (gab and mab) are 
? dishete variables. However, as was first noted by Hawking (1 9691, the resultant 
vartahonai Principle does not always give the correct field equations. 

& a l u m  and Taub (1972) investigated this difficulty and found that the presence 
dive%ence terms (whose variation did not vanish) meant that in some cases 

7GRCtiDdiCeS# y . .  .run from 0-3; Latin indices i, j .  . . run from 1-3 and refer to coordinate frames; Latin 
*4b.-mnfrom 1-3 and refer to non-coordinate frames. 
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230 G E Sneddon 

two of the equations differed from the usual field equations. They also attempMto 
derive these equations by other means. Ryan (1974) also discussed this problemand 
concluded that the trouble arose because the variation was performed in a 
coordinate frame. In the present paper an error, first noted by Misner (see refere-11 
of Ryan 1974), in Ryan's work is corrected and it is shown that the variational prin* 
is valid in non-coordinate frames. It is also shown that only one of the e q m h  
obtained is incorrect, and that this can be derived separately from the wnstrainbofh 
system. 

In $2, the ADM formalism is briefly described and the reduction to homogeneour 
form is carried out. It is shown that whereas the variational principle works for 

non-coordinate frames, the requirement of spatial homogeneity prevents a bou% 
term being set equal to zero (as Hawking 1969 and MacCallum and Taub 1972 foa l .  
%me notation is introduced in 3 3, and changes in the variational principle arc 
discussed. Section 4 looks at the Poisson brackets of the constraints and suggests& 
introduction of a coordinate constraint, which will in general be non-holonomic, 
order to derive the correct field equations. A preliminary investigation is made to 
determine the circumstances under which this constraint is holonomic. In 0 5 thi wod 
is compared with work of Regge and Teitelboim (1974) on asymptotically flat spaces. 

2. ' h e  variational principle in homogeneous spaces 

In the ADM formalism the variational principle (1.1) is written as 

S J [-gij .rri i .o-NX-~n'-2(.rr'",-~?rNi+N~iJg),i]  d3x dt=O (2.1) 

where 
4 00 -1/2 g. 11 = 4 g .  'I' N = ( - g  1 7 

~i = 4gOi, di = (-"g) ( rw-gw r m g  )gipgjq, 
f l =  "'Ig.. 

(2.21 I/2 4 0 4 0 rs 

'I 

and g'' is the inverse of gip In this formalism N and Ni are the Lagrange multiplies 
corresponding to the constraints 

x= g-'I2(Tijri j  -$r2) - g 1 / 2 ( 3 R )  (2.31 

(2.49 

R is the scalar curvature derived from gij and the bar denotes covariant 3 

with respect to the gik All indices are raised and lowered with gij and gip Variationwtb 
respect to d, gii, N and N, gives the field equations as 

2Ng-'''(~lj -$gjjr)  +2Nciij, (2.501 

- -Ngl/2(3Rii-I 2g i j3  R)+4Ng-'/2gij(.rrm".rrmr,, - f . r r  1 2  ) - 2 ~ g - ~ / ~ ( ~ ~ ~ ~ ~ - 4 m r " )  

+ g 1 / 2 ( d i j  - gijhr;;m) + (a;iNm),, - ~ i , , ~ m j  - Nj,m.rrmi 
(2.5b) 

X=O.  ( 2 . 5 ~ )  

x'=o. (2.54 
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ivergence in the integrand plays no part in the variational principle and 
cted. 

,&metric is assumed to be spatially homogeneous (i.e. there exists a three- 
&metry group which is transitive on a family of space-like hypersurfaces?) 

b 
gij = g a b ( f ) u a i u  j 

&$are independent of t and satisfy 

d d  = C a b c u b  A U'. (2.7) 

f*Shesmcture constants, and can be assumed to have one of the nine canonical 
b a h d  by Bianchi (1897). Also, riJ = (det uai)rab(t)u~ud' where uaiubi = a n b .  

bbffactor on the right-hand side appears because rii is a tensor density. The 
bkgration in equation (2.1) can now be performed and the variational principle 

- I  8 [-gabrab.o-Nx-Na%fa -2(TrubNb -&TN")I,] dt=O (2.8) 

hN,(t)=N,uai and N = N ( t ) .  One point that is immediately apparent is that the 
& h o f  the spatial divergence term does not always vanish. In fact 

(TabNb - i r N " ) ~ , =  (rabNb -BrN")C',,. (2.9) 

tkksCC, = 0, variation with respect to N, will result in incorrect constraints, and so it 
mthat in Hamiltonian cosmology, this term should be removed from the variational 
&@e, which now becomes 

8 I (-gabTab,o-N%?-Na%") dt=0.  (2.10) 

bation (2.10) still leads to incorrect field equations. As several authors (Hawking 
i~lMacCallum and Taub 1972, Ryan 1974) have noted, the trouble arises when the 
Ghof  3RJg is taken with respect to gab. For an arbitrary vector basis 

leere 
R~ = rcbd,c- rcbc.d + qCrfd - rfcrig, 

rdba = f g d c ( C c a b  -t cbca - Cabc + g c , b  + gbc,a - gub,c) 

(2.11) 

(2.12) 
"~nnection, and one finds 

= - I Rab 8gabJg d V+$ gab 3RJg 8gab d V+ gab SRabJg d V (2.13) 
M I 

gab 8 R a b  = Oaja (2.14) 

(2.15) 

does not include the models of Kantowski and Sachs (1966). These models have the 
L*panmeterhmeQgroup G4 = GI 0 SO3 actingon a family of space-like hypersurfaces. However, this 
'*no transitive 4. 

= gdb 6r&-gab 8r',c= (gadgcb -g ab g dc )(8g,-d)lb. 
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Quation (2.14) is the corrected version of equation (2.9) of Ryan (1974) which baa 
extra term, -C, GTbCdgd, on the right-hand side. The possibility of an enor in thb 
equation was first noted in reference I1 of Ryan (1974). NOW, provided 6g, 
(ah) can be made to vanish on the boundary, the last term in equation ( 2 ~ 3 ) ~  
vanish and the variation Will give the usual result. However, if &b and *e tok 
constants (or rather functions of time only) these conditions cannot be Satisfiedwih 
Sg, vanishing everywhere. This is the situation in Hamiltonian cosmology. In thjcasc 

(2.16) 

and will not vanish unless 

cb&(Cc&&gaf- cacg"gdf) s&f = uaCbba = 0. (2.17) 

MacCallum and Taub (1972) showed that if equation (2.17) is to hold for arbitrm,$g, 
then 

Cbb, = 0. (2.18) 

Ellis and MacCallum (1969) called such cosmologies class A models. They indude 
types I, 11, VII,,, VIo, IX and VI11 in the Bianchi-Behr classification (Estabrook ad 
1968) whereas models whose isometry group has type V, IV, VIIIh or VII, are called 
class B models. Equation (2.10) will thus provide the correct field equations for cIassA 
models but not for class B models. 

The equations obtained from equation (2.10) are 

&b,O Kab - 4N(aab) (2.1911) 

(2. I9bl 

X = O  (2.194 

Z = O  /2.196) 

T".~ = L* - NJg(4a"ab + 2 ~ ~ d * ) ~ )  -2@?Ccb)d$7Cd +27rabNCac 

where Kab and L* are the frame components of the right-hand sides of equations 
( 2 . 5 ~ )  and (2.56) and 

a, =$C,,. (2.20) 

The additional term -NJg(4u"ab + in equation (2.196) results from tk 
non-vanishing divergence in equation (2.13) and the term 27rabNCac is simply k5)Pf 
MacCalium and Taub (1972). The term -21Vf'rC:)d~cd does not appear exPlidflYrn 
their work as they effectively considered N" (rather than N,) to be the independent 
variables, but appears implicitly in (4.4) of that paper. The extra term in eq@boa 
(2 .19~)  does not seem to have been commented upon before. It can be eliminatdbYa 
different choice of Lagrangian, but if this were done, the constraints derived from' 
variational principle would be incorrect. 

The constraints imply that each of these terms will be zero for class A models. '' 
Class B models, each term (apart from -Ndg(4a"ab + 2 a c p b ) c ) )  will be zero Ody if 

Na 
Put J% = 0, which is the usual assumption in Hamiltonian cosmology. 

0. Thus, for class B models, the available coordinate freedom has to be 
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to change the variational principle s- 
BMb possible to somehow modify the variational principle in order to obtain the 
&&ldequatiOns, for which purpose it is convenient to use the following notation: 

(3.1) mab-ip Eb)cd  
- 2  cd 

A' = a"u,. (3.2) 

ad 
Ibm 

Cak = m E& +2acb a",]. 
WS identity, c [ a b C e d ] c  = 0, implies 

mabab = 0. 

~ d a s s  B models, the metric can be written 

g& = XaXb + Y, Yb + A-'a,ab 

(3.3) 

(3.4) 

(3.5) 

X,, Ya and A-la, form an orthonormal basis. The seven parameters 
(,y,,Y,A) may be reduced to six by the inclusion of an additional constraint. In 
partIcoIar, the constraint 

densure that the vectors X,  * Y, are eigenvectors of mab. 
It is clear from equation (2.17) that, provided only certain variations 6gd are 

*in the variational principle, the correct equations will be obtained. All that is 
needed is that 

( X b x c -  ybyc)m" =o  (3.6) 

hpation (3.7) will be satisfied by choosing &ab to be of the form 

b='(')&b +b(t)a(axb) + r ( t ) a ( a  yb )+  6 ( t ) X ( a Y b )  

+U( t ) [A 3xaxb -A Y, Yb -ig-1'2(h+ - h-)aaab] (3.8) 

h A , = $ X a *  Ya)(Xb * Yb)mab. Thus it seems that for N, = 0, five components of 
bequitions for * O b 0  are given correctly by the variational principle (2.10), which is 

more than Macdallum and Taub claim. Furthermore, the remaining component 
ranbededuced from the constraint a,%" = 0, using equation ( 2 . 1 9 ~ )  with N, =O. 

At this stage, it is important to note that when u,NQ = 0, equation ( 2 . 1 9 ~ )  together 
&theconstraints implies that aa(gab,o)lb = 0, so that 

(3.9) 

if %N" = 0, the change 6 g a b  in the metric between one space-like hypersurface imd aneighbouring space-like hypersurface will always satisfy equation (3.7). In the 
vaslahonal Principle, it should not be necessary to consider variations in the metric 
*than those in equation (3.8). If this could be arranged, the incorrect equation 
tor '"D would not appear, but the corrected equation could be derived from the 
writ % ~ = o .  It turns out that such a procedure will, in most cases, involve 
Pbodomganon-holonomic constraint. Before discussing this point it is convenient to 
bo)r at the Poisson brackets of the constraints. 
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4. Addition of a coustraht 

For the variational principle 6 J ( - g a b r O q O - N % - N a V )  dt = 0 with the total H~ 
tonian H = N%+ the evolutien equations of any function (f) of g, and TRJ Qp 

be written as 

f.0 = [ f ,  Hi (4.1) 
where the Poisson bracket (Pb) is defined by 

In order that the constraints be preserved in time it is necessary that 

[Z, HI=pF, KJ=o. (4.3)i 
In the full ADM formalism (and in class A models) all of the constraints have wea)rfg 
vanishing Pb's with each other and so equations (4.3) do not place any restriction onN 
and Nu. In class B models however, the Pb's do not all vanish, since 

[%, ~ ] - - 2 ( J g ) a ' [ - 3 A Z + g - 1 ( h + - A - ) 2 ]  (4.44 

[r, Xq-0. (4.46) 
Therefore, since N must be non-zero, equation (4.3) cannot be satisfied. Wbere;ls 

X a r  and Y a T  both have weakly vanishing Pb's with the other constraints, u a r  hasa 
non-vanishing Pb with X 

Since there is some freedom in choosing the generalized coordinates and momenta 
(i.e. the usual coordinate freedom), it may be possible to add a new constraint (U=Ot 
with its Lagrange multiplier, A, so that the new Hamiltonian 

H'=H+AU (4.5) 

would satisfy 

[4 H']=[*, H']=[%, H']=O (4.6) 

for a certain choice of N # 0, N" and A. Such a constraint would be a coordinate 
condition. Provided [a.*, U ]  does not vanish weakly, equation (4.6) can then 
satisfied. It would of course be desirable to choose a condition which would imply 

aaNa = 0 (4.1) 

(2aaab+aCC'*),)g&.,=0. (3.9) 

and it would be best if this constraint had the form f(g&) = 0. Now equation (4.7) is 
equivalent to (3.9), i.e. 

If this expression can be integrated, the result would be a suitable coordinate an&am 
to U s e ,  and would effectively ensure that any variation Sg, in the metric would sa@ 
equation (3.7). 

In type v spaces, where mab = 0, equation (3.9) can be written 
(gA6).o = 0. (4.8) 

f FollowingDirac(1964), two quantities A, Bare said to be weakly equal (A = B )  if their differen@& 
when the field equations are satisfied. 
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Bsthecoos~aint is holonomic. The constant of integration can be taken as unity and 
*&nt becomes 

%=gA6- 1 =O. (4.9) 

d+g, quation (3.9) is not integrable for arbitrary g&,O, but for these types, it may 
Is %le to place some additional restriction on the & so that equation (3.9) will be k P  .*blefor the restricted metrics. Such a result is to be expected in view of the fact 
(Lwlum (1971) has found a variational principle for class B models in which 
,L,=O. 

method for investigating this possibility is to proceed as follows: mab can be 

mab=XbnbC+ Yc"cb (4.10) 

& x  Y,  6" and C" are constants, with baaa = c"a, = 0. Note that equation (4.10) 
bmtdetennine X ,  Y, b" or c" uniquely. Having made a choice of b" and c", the 
&gab can be parametrized by the six numbers b .  _b, _ b .  _c, _c . _c (i.e. b"b, etc), and a', 
&"variant components of U,. Then A' = ucu, and 

g* = hab +A-'aaab (4.11) 

4ut 

h* = [_b. b _c . _c - (b  . _c)']-' (_c . _c b"bb - 2_c . b b("c b, + _b . _b cacb).  (4.12) 

pjlls 
aC%b = S(Jg)-'b[dCb], (4.13) 

hS=2A[_b.  _b _c . _c - ( b .  _c)']-', it can be shown that 

k!fd&*,O 
=aCh,med~d,bhab,O = ( 2 J g ) - 1 ~ ( b r ~ ) ' [ ~ b .  b/b.  _c - Y_c. c / b .  _c],~ (4.14) 

k f o .  (The case where b .  _c = 0 can be treated separately.) It follows that 

~ t a c C ~ a b ~ ) g a b . o  = (2JgA)-'[(JgA3), ,-S(b.  _c)'A(Xx- Y Y ) , ~ ]  (4.15) 

$ x = b .  b /b .  c and y = _ c .  _c/b. _c. Equation (4.13) can be used to show that 
W'O''(.lg).o = -S-' S,o, so 

(4.16) 
hkisa"t that transforms as a scalar density under a transformation of base. 
hforey equation (3.9) can be written 

1 J g  = ICS- 

(4.17) 

Nmaone-form df+gdh can be written as p d q  (i.e. is proportional to adifferential) 

(4.18) 
yy = 0 corresponds to maa = 0, which is the case found by MacCallum 

")* m"a # 0, equations (4.17) and (4.18) show that y = y ( x )  and K = K ( x ) ,  i.e. 

''Only if dfA dg A dh  = 0. Therefore equation (4.17) is integrable if and only if 

(&+ Yy) dt Adx hdy = 0. 
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there are two functional relations connecting x, y and K. If y ( x )  is given, 
(4.17) will specify K to within a constant. The Hamiltonian for these cases be 

H' = H+A% +c& (4.19) 

with 
Q = K - X(X) 

9 = y - y ( x ) .  

If the metric is such that b" and c" can be chosen to satisfy b .  _c = O  consistently, 
equation (3.9) wiii once again be integrable. However, _b.  _c = 0 at all times will again 
impose further conditions on the metric. A number of possibilities arise, one o f a  
is the case muu = 0. The Hamiltonian will again be given by equation (4.19) with 

%=gA3-1 

9=b._c .  

For those cases in which equation (3.9) is not integrable a non-holonomicconstraht 
has to be used. It is not certain how to incorporate such a constraint into a Hamilton& 
formalism. One possibility is to rewrite Hamilton's equations as 

&,o = a H / a P  

n*,o = -(aH/a&,) -~c" 
( 4 . 2 2 ~ )  

(4.22bj 

where c" is the coefficient of in equation (3.9) and the value of A is lixed by 
a,%? = 0. This is essentially the procedure suggested by Ryan (1974). It is unclear how 
equations (4.22) can be derived from a variational principle, let alone how to proceed 
with the canonical quantization of these models. 

5. me variational principle in asymptotically fiat spaces 

In a recent paper, Regge and Teitelboim (1974) discussed the variational principle (1.1) 
in the case of asymptotically flat metrics, where the spatial boundary of the regon 
integration is at spatial infinity. They found initially that in order to obtain the "3 
field equations (or indeed any meaningful field equations at all) from 

it is necessary to write 

H = NX+ N i x  d3x + E  i 
which differs from the usual choice by the surface integral 

(5.2) 
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wtheirreasoning is as follows. Near spatial infinity the metric can be written in 

C W  
M x'x' 

ds2 r+m - -( 1 -E) dt2 + ( Si' + 7) dx' dxj. 

pmout that for any change 6gij in the metric that preserves this form 

8 N%+NiX' d3x = I A' '6g i j -6 {E[g i iJ  I 

(5.4) 

(5.5) 

rAae is the right-hand side of equation (2.5b).  Since for the metric (5.4), 
& l 5 ~ ,  itsvariation will not in general vanish. Thus if equations (5.1) are to give the 
d f i e l d  equations, H must be chosen as in equation (5.2). 

interesting to note the similarities between this result and the work on 
@mian cosmology. In both cases the boundary of the region of integration is in a 
&where the space has some symmetry. (In the case of asymptotically flat spaces, 
$cp~~is C, 0 SO3 where C1 is a one-parameter conformal motion.) In this region 
&metricmust be of a certain type, and any variation in the metric must preserve this 
e mereas it is true that in asymptotically flat spaces, the most general variation 6gij 
&preserves the form of the metric will have SM # 0, the most general variation is not 
antialforavariational principle. In  fact, it is usual to suitablyrestrict Sg,, and 6gij,, on 
bcboundary of the region of integration, and in the present example it does not seem 
lereasonable to restrict Sg, and Sgij,& on the boundary to satisfy SE = 0. 

Io Hamiltonian cosmology, 6g,b can be restricted on the boundary (and hence 
*erywbere) to satisfy (2a"ab + C'""',a') Sg,, = 0. In the same way that a,N" = 0 
Wtees (2a"ab + C(ab)cac)g,b,o = 0 for any solution of the field equations, E,o = 0 
mbededuced from the equations for asymptotically flat spaces; this means that any 
sMon of these equations will satisfy the constraint 

E = constant. (5.6) 
Ifbconstraint is included in the variational principle in the usual way, the difficulties 
mtered by Regge and Teitelboim will be avoided. This is similar to the approach 
dopu by Regge and Teitelboim who add to the Hamiltonian the term d ( p ,  - P,) 

Q1 is a Lagrange multiplier describing time-like translations at  infinity and 
P,=E. 

6 Wmmm 

b P W S  that whenever the Einstein variational principle is used, care should be taken 
be~ure  that the correct field equations are obtained. Certainly in the case of 
henmus spaces of class B the usual variational principle breaks down in a number 
dfla@s. By neglecting certain terms in the Lagrangian, some of these difficulties can 
kwer@me, but there still remains the problem that the field equations for 7 ~ ~ ~ , ~  are 
"conect* The incorrect terms arise from a surface integral that does not vanish for 
artain Sg,,, though it is possible to include a constraint that will prohibit 

Unfortunately, for most class B models, the necessary constraint is 
who'onomk. Only for type V models is it holonomic for arbitrary gab, although for 
*cl% B models it may be so if gab satisfies some additional constraint (e.g. 
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ma, = 0). The Einstein field equations for these models can therefore be derivdfro" 
variational principle. The Hamiltonian for t w  V models is given by equation (49 
with V given by equation (4.9). The Hamiltonian for other class B metria for which 
quation (3.9) is integrable will be given by equation (4.19) with % and $3 given by 
equations (4.20) or (4.21). A similar problem arises for asymptotically flat spaces,ba 
in this case also it is possible to introduce a (holonomic) constraint that will suitabiy 
restrict the variations Sg, 
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